ĐỀTHI THỬ TUYỂN SINH VÀO LỚP 10 THPT NĂM 2021 Môn Toán Trường Cao Xuân Huy –(Thời gian làm bài 120 phút)
- Thứ ba - 27/04/2021 15:53
- In ra
- Đóng cửa sổ này
Môn Toán Trường Cao Xuân Huy
PHÒNG GIÁO DỤC VÀĐÀO TẠO DIỄN CHÂU
ĐỀTHI THỬ TUYỂN SINH VÀO LỚP 10 THPT NĂM 2021
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image001.gif)
Câu 1.(2,0 điểm)
1) Tính:
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image003.gif)
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image005.gif)
2) Tìm ĐKXĐ và rút gọn biểu thức :
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image007.gif)
Câu 2. (2,5điểm)
1) Trong mặt phẳng tọa độ Oxy, đường thẳng y = ax + b đi qua điểm M (-1; 2) và song song với đường thẳng y = 3x + 1. Tìm hệ số a và b.
2) Cho phương trình:
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image009.gif)
a) Giải phương trình với m = 2
b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt. Gọi
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image011.gif)
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image013.gif)
Câu 3.(1,5 điểm)
Hai người cùng làm chung một công việc trong
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image015.gif)
Câu 4.(3,0 điểm)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Các đường cao BE và CF của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng:
a) BCEF là tứ giác nội tiếp
b) KB.KC= KE.KF
c) Gọi I là trung điểm của BC, chứng minh M, H, I thẳng hàng
Câu 5.(1,0 điểm)
Với hai số thực không âm x, y thoả mãn
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image017.gif)
![](https://thcsdiencat.dienchau.edu.vn/file:///C:\Users\DELL\AppData\Local\Temp\msohtmlclip1\01\clip_image019.gif)
–––––––Hết–––––––
HƯỚNG DẪN CHẤM ĐỀ THI THỬ VÀO LỚP 10 THPT NĂM 2021
Câu 1 |
|
1,0 |
![]() ![]() |
0,5 0,5 |
|
2) Tìm ĐKXĐ và rút gọn biểu thức : ![]() |
1,0 |
|
![]() ![]() ![]() ![]() ![]() |
0,25 0,75 |
|
Câu 2 |
|
1,0 |
Đường thẳng y = ax + b song song với đường thẳng y = 3x + 1 nên a = 3. b![]() Vì đường thẳng y = ax + b đi qua điểm M (-1;2) nên ta có: 2 = 3.(-1) + b Ûb= 5 (t/m vì b ![]() Vậy: a = 3, b = 5 là các giá trị cần tìm. |
0,5 0,5 |
|
2) Cho phương trình: ![]() a) Giải phương trình với m = 2 b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt. Gọi ![]() ![]() |
1,5 | |
![]() m = 2 ta có pt: ![]() ![]() Pt có 2 nghiệm phân biệt: ![]() |
0,25 0,25 0,5 |
|
![]() Ta có ![]() Theo định lí Viét ta có: ![]() ![]() ![]() |
0,25 0,25 |
|
Câu 3 | Hai người cùng làm chung một công việc trong ![]() |
1,5 |
Gọi thời gian người thứ nhất hoàn thành một mình xong công việc là x (giờ), ĐK ![]() Thì thời gian người thứ hai làm một mình xong công việc là x + 2 (giờ) Mỗi giờ người thứ nhất làm được ![]() ![]() Vì cả hai người cùng làm xong công việc trong ![]() ![]() ![]() Do đó ta có phương trình ![]() ![]() Û 5x2 – 14x – 24 = 0 D’ = 49 + 120 = 169, ![]() => ![]() ![]() Vậy người thứ nhất làm xong công việc trong 4 giờ, người thứ hai làm xong công việc trong 4+2 = 6 giờ. |
0,25 0,5 0,5 0,25 |
|
Câu 4 | Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Các đường cao BE và CF của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng: a) BCEF là tứ giác nội tiếp b) KB.KC= KE.KF c) Gọi I là trung điểm của BC, chứng minh M, H, I thẳng hàng |
3,0 |
|
![]() |
0,5 |
![]() nên E, F thuộc đường tròn đường kính BC. Do đó tứ giác BCEFlà tứ giác nội tiếp đường tròn đường kính BC |
0,5 0,5 |
|
b) Chứng minh KB.KC= KE.KF: tứ giác BCEF nội tiếp (câu a) ![]() c/m ![]() suy ra KB.KC= KE.KF (1) |
0,25 0,5 0,25 |
|
c). AD là đường kính của đường tròn (O) c/m tứ giác BHCD là hình bình hành suy ra H, I, D thẳng hàng(1) chứng minh ![]() chứng minh tứ giác AMFE nội tiếp suy ra ![]() suy ra H, M, D thẳng hàng (2) Từ (1) , (2)suy ra H, M, I thẳng hàng |
0,25 0,25 |
|
Câu 5 | Với hai số thực không âm a, b thoả mãn ![]() ![]() |
1,0 |
* Nếu a = 0 hoặc b = 0 thì M = 0 * Xét a và b khác 0 (tức a, b >0) Ta có: ![]() Áp dụng BĐT Côsi cho ![]() ![]() ![]() ![]() Áp dụng BĐT Cô si cho ![]() ![]() ![]() ![]() ![]() Từ (1) và (2) suy ra ![]() Vậy max M = ![]() ![]() So sánh các trường hợp thì GTLN của M là ![]() ![]() |
0,25 0,25 0,25 0,25 |